Innovative Postgraduate Education in The Field of Environment Protection: Methods and Tools

Food authentication by fingerprinting approaches

Silvia Portarena¹, Chiara Baldacchini^{1,2} ¹Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Italy ²Biophysics and Nanoscience Centre, Department of Ecological and Biological Sciences (DEB), University of Tuscia, Italy 6 October 2022

BIO Presenter

- Master degree in Physics
- PhD in Food Biotechnology
- Main research activity: Food authentication, Biochemistry, Plant physiology, Chemometrics.

Silvia/Portarena

Researcher Research Institute on Terrestrial Ecosistem, National Research Council

@ E-mail: silvia.portarena@cnr.it

in LinkedIn:

https://www.linkedin.com/in/silviaportarena-5a2140222/ Modernized/New Developed Courses involved

Environmental StatisticsFood safety risk assessment

Prerequisites

Chemistry
Biology
Experimetal errors theory and basic statistics

Outcomes

- The students will acquire the capacity to analyze complex data matrixes with special reference to food quality and authentication
- The students will learn how to use and apply the multivariate statistical analysis to resolve food related problems

Involved analitical techniques

Mass Spectrometry

Identify heteromolecules, deduce molecular weight and formula

What can we extract by fingerptinting?

Analytical operations

Application 1: Quality evaluation of acerola phenotypes

	Fruit si	Fruit size characteristics and color parameters of 103 acerola phenotypes																						
	Phenotypes	Fruit weight (g)			Fruit volume (cm ³)		Pulp yield (%)		Longitudinal diameter (mm)			Transverse diameter (mm)			Brightness L			Color a			C	1		
Sompling	1	3.79	± 0.0	4 3	9 ±	0.32	72.0	±	0.7	16.3	±	0.2	19.3	±	0.2	41.7	±	1.8	41.6	±	1.1	31.4	±	1.8
Samping.	2	5.52	± 0.1	7 5	.6 ±	0.30	67.3	±	2.9	18.9	±	0.2	22.1	±	0.2	44.2	±	1.2	44.5	±	0.9	31.6	±	1.6
- 103 nhenotynes	3	4.24	± 0.1	8 4	7 ±	0.31	69.0	±	2.6	17.9	±	0.2	20.5	±	0.3	47.2	±	1.4	41.7	±	1.5	37.8	±	1.2
roo pricriotypes	4	6.05	± 0.1	6 5	5 ±	0.21	70.1	±	1.0	18.3	±	0.3	22.6	±	0.4	34.7	±	2.1	37.3		2.4	21.0	±	2.9
- 309 samples	5	4./4	± 0.	4 4	8 ±	0.08	66.4 50.1	±	5.0	18.0	±	0.2	20.5	±	0.2	29.1	±	1.5	33.0		2.8	15.5	±	2.5
	7	6.20	± 0.	4 5	<u>6</u> ±	0.46	63.9	±	9.0	19.4	± +	0.3	22.1	± +	0.3	28.0	± +	1.4	34./ 22.2		2.5	9.3		1.9
- 12 variables		4.62	+ 0	4 4	<u>s</u> +	0.24	75.3	+	1.5	18.7	+	0.2	20.3	+	0.2	34.5	+	1.8	41.1		1.2	21.8	+	3.0
	9	7.26	± 0.	1 6	8 ±	0.60	75.3	+	0.8	20.4	+	0.4	24.1	+	0.5	36.0	+	5.0	29.8	+	2.3	16.1		2.0
	10	5.08	± 0.	8 5	0 ±	0.25	69.6	±	1.3	18.6	±	0.9	20.9	±	0.4	29.5	±	1.2	24.8	±	1.9	10.6	±	1.4
	11	8.21	± 0.	9 8	5 ±	0.50	66.3	±	1.6	21.3	±	0.2	26.0	±	0.3	30.4	±	2.1	29.2	±	2.5	15.0	±	2.7
	12	3.95	± 0.	1 4	2 ±	0.19	77.8	±	0.7	16.7	±	0.2	19.4	±	0.3	37.0	±	1.9	33.3	±	2.6	21.3	±	2.6
	13	8.85	± 0.	38	4 ±	0.13	74.7	±	3.5	21.6	±	0.2	26.6	±	0.3	36.1	±	2.7	37.1	±	3.1	25.1	±	3.8
	14 	4.79	± 0.:	2 4	5 ±	0.10	77.7	±	0.4	18.8	±	0.2	20.3	±	0.3	39.7	±	1.5	46.1	±	3.0	32.5	±	3.4
	90	5.48	± 0.1	2 6	0 ±	0.23	80.5	±	2.2	18.0	±	0.2	22.0	±	0.3	27.1	±	0.9	18.6	±	2.4	8.0	±	0.7
	91	5.63	± 0.1	2 6	0 ±	0.23	74.5	±	1.2	18.0	±	0.2	22.1	±	0.4	27.8	±	1.2	26.8	±	1.5	9.0	±	0.9
	92	4.14	± 0.1	9 3	9 ±	0.19	76.4	±	1.3	16.8	±	0.4	19.5	±	0.3	29.1	±	2.9	18.3	±	2.0	11.9	±	2.2
	93	4.49	± 0.1	8 4	8 ±	0.43	90.1	±	1.0	16.6	±	0.2	20.5	±	0.2	21.5	±	0.7	19.1	±	1.6	5.0	±	0.6
	94	4.55	± 0.0	8 5	2 ±	0.16	89.1	±	0.5	15.8	±	0.2	19.6	±	0.3	26.3	±	1.6	27.2	±	1.0	9.9	±	1.4
	95	4.48	± 0.1	5 5	2 ±	0.37	83.7	±	0.4	16.3	±	0.3	20.6	±	0.4	35.0	±	2.2	33.0	±	1.8	16.0	±	1.6
March da No	96	4.54	± 0.	1 4	4 ±	0.16	85./	±	0.5	1/.3	±	0.2	20.8	±	0.3	26.5	±	1.2	27.4		1./	8.6		0.7
	97	4.72	± 0.	9 4	0 ± 7 ±	0.33	01.0 91.9	±	0.9	10.8	±	0.2	20.9	±	0.5	27.9	±	2.0	24.3	<u></u>	1.7	0.2		1./
	99	4.11	+ 0	3 /	7 <u>+</u> 7 +	0.30	82.2	+	2.2	16.6	+	0.4	18.2	+	0.5	31.2	+	3.0	18.0	+	1.7	10.3	+	1.5
	100	5.96	+ 0	0 6	2 +	0.12	68.8	+	4.8	21.5	÷	0.2	21.3	÷	0.3	34.2	÷	1.4	20.4		1.7	11.6		0.9
	101	4.57	± 0.0	5 4	5 ±	0.35	85.0		1.4	17.4		0.3	20.4		0.4	33.4		2.6	19.5		1.6	12.3		2.5
	102	6.28	± 0.1	4 6	6 ±	0.35	77.8	±	1.6	17.4	±	0.2	22.6	±	0.4	40.9	±	2.3	17.9	±	1.9	20.5	±	1.9
et the European Union	103	4.65	± 0.0	7 4	3 ±	0.19	82.4	±	0.7	15.2	±	0.2	19.2	±	0.3	31.7	±	1.9	17.6	±	2.2	11.9	±	1.5

Analytical acquisition and data matrix elaboration

Biochemical characteristics of the fruits of 103 acerola phenotypes

- Morphological + chemical traits
- data matrix: M_{103 x 12}
- Multivariate classification analysis
- HCA (hierarchical cluster analysis)

	Phonotypes	Vitamin C Content (mg/100 g pulp)			Soluble So	Tit	ole		" ц		SS	C/T	A	Total Polyphenols					
	rnenotypes				(° Brix	Acidit) (TA)	pii			1	atio		(mg/kg gallic acid)					
	1	1600	±	100	7.10	±	0.2	0.40	±	0.10	3.47	±	0.01	18.62	±	1.97	1367	±	14
	2	550	±	150	7.43	±	0.2	1.30	±	0.10	2.95	±	0.05	5.76	±	0.35	1236	±	14
	3	1000	±	10	7.14	±	0.2	1.90	±	0.10	3.48	±	0.01	3.77	±	0.18	917	±	3
	4	2100	±	100	11.86	±	0.3	3.35	±	0.15	3.34	±	0.01	3.54	±	0.08	1134	±	36
	5	1375	±	25	9.22	±	0.2	3.40	±	0.10	3.28	±	0.00	2.71	±	0.08	1150	±	34
	6	1300	±	100	7.10	±	0.2	1.90	±	0.10	3.23	±	0.01	3.75	±	0.16	1456	±	24
	7	650	±	150	9.48	±	0.4	3.20	±	0.10	3.15	±	0.00	2.97	±	0.15	1088	±	18
	8	575	±	25	7.94	±	0.5	2.60	±	0.10	2.82	±	0.02	3.05	±	0.17	1192	±	28
	9	790	±	10	7.04	±	0.1	2.90	±	0.10	2.92	±	0.02	2.43	±	0.06	1582	±	13
	10	1100	±	100	9.20	±	0.3	1.95	±	0.15	2.99	±	0.01	4.73	±	0.09	84	±	2
	11	1210	±	10	12.12	±	0.5	2.20	±	0.10	3.16	±	0.02	5.53	±	0.30	1160	±	17
~	12	950	±	50	9.38	±	0.2	2.30	±	0.10	3.23	±	0.03	4.08	±	0.08	1438	±	71
r	13	1400	±	100	9.50	±	0.2	2.90	±	0.10	2.87	±	0.01	3.28	±	0.12	1202	±	20
	14	2025	±	75	7.62	±	0.4	3.40	±	0.10	2.72	±	0.02	2.19	±	0.07	1853	±	95
	91	1095	±	95	8.02	±	0.3	3.60	±	0.10	3.86	±	0.02	2.23	±	0.07	891	±	34
	92	1445	±	255	10.08	±	0.2	3.55	±	0.05	3.66	±	0.01	2.84	±	0.06	1476	±	125
	93	1180	±	20	8.35	±	0.2	3.48	±	0.08	3.54	±	0.01	2.40	±	0.07	1382	±	15
	94	1150	±	150	9.13	±	0.2	3.63	±	0.02	3.48	±	0.03	2.52	±	0.05	2260	±	48
	95	1145	±	5	10.14	±	0.5	3.06	±	0.06	3.85	±	0.02	3.31	±	0.17	1223	±	31
	96	1075	±	25	7.12	±	0.2	3.82	±	0.02	3.37	±	0.01	1.86	±	0.06	1811	±	50
	97	800	±	100	8.61	±	0.3	3.11	±	0.01	3.57	±	0.02	2.77	±	0.10	1558	±	83
	98	1350	±	50	11.27	±	0.5	3.63	±	0.03	3.46	±	0.02	3.10	±	0.13	1403	±	62
	99	2625	±	75	7.75	±	0.2	3.10	±	0.10	3.31	±	0.01	2.50	±	0.07	1197	±	47
	100	1295	±	5	7.46	±	0.1	3.63	±	0.02	3.66	±	0.01	2.06	±	0.04	635	±	0
	101	1000	±	50	6.50	±	0.2	3.45	±	0.05	3.37	±	0.03	1.88	±	0.05	1173	±	20
	102	675	±	25	9.93	±	0.2	3.12	±	0.11	3.49	±	0.01	3.19	±	0.06	967	±	41
	103	870	±	20	11.17	±	0.3	3.81	±	0.01	3.36	±	0.00	2.93	±	0.07	1681	±	104

Unsupervised clustering: HCA

Heat map row and column dendrogram, based on <u>hierarchical cluster analysis</u>

Explorative analysis: PCA

Application 2: geographical traceability of olive oil

Analytical acquisition and data matrix elaboration

Stable isotope composition of oils

Raman spectra of oils

•Multivariate classification analysis

From unsupervised exploration...

...to supervised classification

Conclusions

- Food authentication by fingerprinting approach enable the characterization of foodstuff in terms of nutraceutical compounds, geographical and botanical origin, crop management, etc.
- The great amount of data provided by the different analytical approaches needs the use of multivariate statistical methods
- The application of a particular statistical tool varied in relation to the specific case study in order to understand and model the information contained in the complex matrixes
- It is of the great importance to develop other novel analytical approaches to define efficient markers and indicators for food authenticity and quality

THANK YOU !

Silvia Portarena; Chiara Baldacchini silvia.portarena@cnr.it chiara.baldacchini@cnr.it

